Topik trending
#
Bonk Eco continues to show strength amid $USELESS rally
#
Pump.fun to raise $1B token sale, traders speculating on airdrop
#
Boop.Fun leading the way with a new launchpad on Solana.

EigenPhi HQ 🎯 Wisdom of DeFi (🔭, 🎙) 🦇🔊
Kasus penggunaan AI perusahaan adalah di mana verifikasi sering menjadi berantakan. Tetapi jika Anda dapat memanfaatkan log terstruktur, niat ekonomi, atau perilaku agen, Anda dapat memperkuat sinyal. Mari kita bekerja sama untuk membawa perilaku yang dapat diverifikasi tersebut ke dalam rezim pelatihan model.

Salesforce AI Research24 Sep, 08.57
📣 Variasi dalam Verifikasi: Memahami Dinamika Verifikasi dalam Model Bahasa Besar
📄 Kertas:
🔗 Proyek:
Pernah bertanya-tanya apakah verifikator LLM Anda benar-benar dapat diandalkan untuk tugas Anda? Kerangka kerja analisis kami mengungkapkan tiga faktor kunci yang menentukan keberhasilan verifikasi di seluruh kesulitan masalah, kemampuan generator, dan kemampuan verifikasi.
Wawasan utama:
📈 Kesulitan masalah mendorong pengenalan respons yang benar - verifikator unggul dalam masalah mudah tetapi berjuang dengan masalah yang sulit
🔍 Kekuatan generator memengaruhi deteksi kesalahan - generator yang lemah menghasilkan kesalahan yang jelas, yang kuat menciptakan solusi yang elegan tetapi salah
⚖️ Penskalaan verifier menunjukkan pengembalian yang berkurang dalam rezim tertentu - terkadang GPT-4o hampir tidak mengalahkan model yang lebih kecil
💡 Untuk penskalaan waktu pengujian: generator + verifikasi yang lemah dapat mencocokkan kinerja generator yang kuat, dan verifikator yang mahal tidak selalu sepadan.
Karya hebat oleh Yefan Zhou @LiamZhou98, Austin Xu @austinsxu, Yilun Zhou @YilunZhou, Janvijay Singh @iamjanvijay, Jiang Gui @JiangGui, Shafiq Joty @JotyShafiq!
#LLM #AIVerification #TestTimeScaling #FutureOfAI #EnterpriseAI

742
Pujian untuk tim 👏 TOOL Mengangkat Ethereum menjadi ko-prosesor hyperscale adalah pengubah permainan. Di pihak kami, infrastruktur penskalaan hanya berkembang jika dicocokkan dengan data yang transparan dan dapat diaudit tentang pemrosesan dan prioritas transaksi. Tanpa ini, finalitas latensi rendah membuka pintu menuju sentralisasi.

0xprincess24 Sep, 22.26
1// Kami dengan bangga mengumumkan peluncuran TOOL Testnet!
3,35K
Hukum verifier adalah lensa yang bagus, Jason. Penasaran apa pendapat Anda tentang domain seperti kriptografi atau catatan on-chain—di mana verifikasi hampir gratis tetapi kompleksitas solusi meledak? 💭🔐

Jason Wei16 Jul 2025
New blog post about asymmetry of verification and "verifier's law":
Asymmetry of verification–the idea that some tasks are much easier to verify than to solve–is becoming an important idea as we have RL that finally works generally.
Great examples of asymmetry of verification are things like sudoku puzzles, writing the code for a website like instagram, and BrowseComp problems (takes ~100 websites to find the answer, but easy to verify once you have the answer).
Other tasks have near-symmetry of verification, like summing two 900-digit numbers or some data processing scripts. Yet other tasks are much easier to propose feasible solutions for than to verify them (e.g., fact-checking a long essay or stating a new diet like "only eat bison").
An important thing to understand about asymmetry of verification is that you can improve the asymmetry by doing some work beforehand. For example, if you have the answer key to a math problem or if you have test cases for a Leetcode problem. This greatly increases the set of problems with desirable verification asymmetry.
"Verifier's law" states that the ease of training AI to solve a task is proportional to how verifiable the task is. All tasks that are possible to solve and easy to verify will be solved by AI. The ability to train AI to solve a task is proportional to whether the task has the following properties:
1. Objective truth: everyone agrees what good solutions are
2. Fast to verify: any given solution can be verified in a few seconds
3. Scalable to verify: many solutions can be verified simultaneously
4. Low noise: verification is as tightly correlated to the solution quality as possible
5. Continuous reward: it’s easy to rank the goodness of many solutions for a single problem
One obvious instantiation of verifier's law is the fact that most benchmarks proposed in AI are easy to verify and so far have been solved. Notice that virtually all popular benchmarks in the past ten years fit criteria #1-4; benchmarks that don’t meet criteria #1-4 would struggle to become popular.
Why is verifiability so important? The amount of learning in AI that occurs is maximized when the above criteria are satisfied; you can take a lot of gradient steps where each step has a lot of signal. Speed of iteration is critical—it’s the reason that progress in the digital world has been so much faster than progress in the physical world.
AlphaEvolve from Google is one of the greatest examples of leveraging asymmetry of verification. It focuses on setups that fit all the above criteria, and has led to a number of advancements in mathematics and other fields. Different from what we've been doing in AI for the last two decades, it's a new paradigm in that all problems are optimized in a setting where the train set is equivalent to the test set.
Asymmetry of verification is everywhere and it's exciting to consider a world of jagged intelligence where anything we can measure will be solved.

875
Teratas
Peringkat
Favorit