Tendencias del momento
#
Bonk Eco continues to show strength amid $USELESS rally
#
Pump.fun to raise $1B token sale, traders speculating on airdrop
#
Boop.Fun leading the way with a new launchpad on Solana.

EigenPhi HQ 🎯 Wisdom of DeFi (🔭, 🎙) 🦇🔊
Los casos de uso de AI empresarial son donde la verificación a menudo se complica. Pero si puedes aprovechar los registros estructurados, la intención económica o el comportamiento del agente, puedes fortalecer la señal. Trabajemos juntos para llevar esos comportamientos verificables a los regímenes de entrenamiento de modelos.

Salesforce AI Research24 sept, 08:57
📣 Variación en la Verificación: Entendiendo la Dinámica de la Verificación en Modelos de Lenguaje Grande
📄 Documento:
🔗 Proyecto:
¿Alguna vez te has preguntado si tu verificador de LLM es realmente confiable para tu tarea? Nuestro marco de análisis revela tres factores clave que determinan el éxito de la verificación a través de la dificultad del problema, la capacidad del generador y la capacidad del verificador.
Perspectivas clave:
📈 La dificultad del problema impulsa el reconocimiento de respuestas correctas: los verificadores sobresalen en problemas fáciles pero luchan con los difíciles.
🔍 La fuerza del generador afecta la detección de errores: los generadores débiles producen errores obvios, los fuertes crean soluciones elegantes pero incorrectas.
⚖️ La escalabilidad del verificador muestra rendimientos decrecientes en ciertos regímenes: a veces GPT-4o apenas supera a modelos más pequeños.
💡 Para la escalabilidad en el tiempo de prueba: generadores débiles + verificación pueden igualar el rendimiento de generadores fuertes, y los verificadores costosos no siempre valen la pena.
¡Gran trabajo de Yefan Zhou @LiamZhou98, Austin Xu @austinsxu, Yilun Zhou @YilunZhou, Janvijay Singh @iamjanvijay, Jiang Gui @JiangGui, Shafiq Joty @JotyShafiq!
#LLM #AIVerification #TestTimeScaling #FutureOfAI #EnterpriseAI

752
¡Felicitaciones al equipo de TOOL 👏 Elevar Ethereum a un coprocesador hiperescalable es un cambio de juego. De nuestra parte, la infraestructura de escalado prospera solo cuando se combina con datos transparentes y auditables sobre el procesamiento y la priorización de transacciones. Sin esto, la finalización de baja latencia abre la puerta a la centralización.

0xprincess24 sept, 22:26
¡Estamos orgullosos de anunciar el lanzamiento de la red de pruebas de TOOL!
3,36K
La ley del verificador es una gran perspectiva, Jason. Tengo curiosidad por saber qué piensas sobre dominios como la criptografía o los registros en cadena, donde la verificación es casi gratuita pero la complejidad de la solución explota. 💭🔐

Jason Wei16 jul 2025
New blog post about asymmetry of verification and "verifier's law":
Asymmetry of verification–the idea that some tasks are much easier to verify than to solve–is becoming an important idea as we have RL that finally works generally.
Great examples of asymmetry of verification are things like sudoku puzzles, writing the code for a website like instagram, and BrowseComp problems (takes ~100 websites to find the answer, but easy to verify once you have the answer).
Other tasks have near-symmetry of verification, like summing two 900-digit numbers or some data processing scripts. Yet other tasks are much easier to propose feasible solutions for than to verify them (e.g., fact-checking a long essay or stating a new diet like "only eat bison").
An important thing to understand about asymmetry of verification is that you can improve the asymmetry by doing some work beforehand. For example, if you have the answer key to a math problem or if you have test cases for a Leetcode problem. This greatly increases the set of problems with desirable verification asymmetry.
"Verifier's law" states that the ease of training AI to solve a task is proportional to how verifiable the task is. All tasks that are possible to solve and easy to verify will be solved by AI. The ability to train AI to solve a task is proportional to whether the task has the following properties:
1. Objective truth: everyone agrees what good solutions are
2. Fast to verify: any given solution can be verified in a few seconds
3. Scalable to verify: many solutions can be verified simultaneously
4. Low noise: verification is as tightly correlated to the solution quality as possible
5. Continuous reward: it’s easy to rank the goodness of many solutions for a single problem
One obvious instantiation of verifier's law is the fact that most benchmarks proposed in AI are easy to verify and so far have been solved. Notice that virtually all popular benchmarks in the past ten years fit criteria #1-4; benchmarks that don’t meet criteria #1-4 would struggle to become popular.
Why is verifiability so important? The amount of learning in AI that occurs is maximized when the above criteria are satisfied; you can take a lot of gradient steps where each step has a lot of signal. Speed of iteration is critical—it’s the reason that progress in the digital world has been so much faster than progress in the physical world.
AlphaEvolve from Google is one of the greatest examples of leveraging asymmetry of verification. It focuses on setups that fit all the above criteria, and has led to a number of advancements in mathematics and other fields. Different from what we've been doing in AI for the last two decades, it's a new paradigm in that all problems are optimized in a setting where the train set is equivalent to the test set.
Asymmetry of verification is everywhere and it's exciting to consider a world of jagged intelligence where anything we can measure will be solved.

885
Parte superior
Clasificación
Favoritos