我在CES上这周听到很多关于这个的消息。家用机器人至少还需要两年时间。很多人说可能需要五年。 我见到了@BradTempleton,他是@waymo的早期天才。 他再次提醒我,在特斯拉Robotaxi方面我过于乐观。 但我确实告诉大家,我的日期是四月,而不是埃隆曾经承诺的年底。 他讨厌我谈论日期,并给了我一堂关于为什么没有人知道自动驾驶何时完全解决的好课。 我确实有关于车队正在做什么的数据。 这就是为什么我总是在特斯拉社区空间里。 并且在X上有最好的特斯拉列表。 列表即将变得更加重要。 把它们视为真实的基础。你能看到一切。让你保持与现实的联系。 @GaryShapiro在走廊里停下来和我聊了几分钟,真是太好了。 他掌控着全局,一直是个很有风度的人。 我无法想象有比他更好的科技行业领导者。 他的节目开启了自动驾驶时代。几年前,梅赛德斯在这里让我体验了它的第一辆AI车辆。 Gary值得赞扬,因为他从一开始就支持自动驾驶汽车。 但Brad让我思考直觉与知识之间的区别。 重新评估知识类别中的一切,因为我的思维中发现了错误。 我知道有突破即将到来。 但我必须承认,我不知道特斯拉Robotaxi何时会在没有人类乘坐的情况下启用。 数据解决所有争论。 埃隆将被迫放慢速度,直到他拥有足够的数据。他不能承受系统出错,Brad告诉我这就是为什么他认为它不会很快交付。 律师们不会让它交付,直到它完成。事实是,团队中的每个人都意识到它在启用时必须是完美的。 或者非常非常接近。
480EB0
480EB01月9日 08:38
Today, we're joined by @rdn_nikita, co-founder and CEO of @FlexionRobotics to discuss the gap between current robotic capabilities and what’s required to deploy fully autonomous robots in the real world. Nikita explains how reinforcement learning and simulation have driven rapid progress in robot locomotion—and why locomotion is still far from “solved.” We dig into the sim2real gap, and how adding visual inputs introduces noise and significantly complicates sim-to-real transfer. We also explore the debate between end-to-end models and modular approaches, and why separating locomotion, planning, and semantics remains a pragmatic approach today. Nikita also introduces the concept of "real-to-sim", which uses real-world data to refine simulation parameters for higher fidelity training, discusses how reinforcement learning, imitation learning, and teleoperation data are combined to train robust policies for both quadruped and humanoid robots, and introduces Flexion's hierarchical approach that utilizes pre-trained Vision-Language Models (VLMs) for high-level task orchestration with Vision-Language-Action (VLA) models and low-level whole-body trackers. Finally, Nikita shares the behind-the-scenes in humanoid robot demos, his take on reinforcement learning in simulation versus the real world, the nuances of reward tuning, and offers practical advice for researchers and practitioners looking to get started in robotics today. 🗒️ For the full list of resources for this episode, visit the show notes page: 📖 CHAPTERS =============================== 00:00 - Introduction 04:07 - Is robot locomotion solved? 06:04 - Sim-to-real gap 08:58 - Adding semantics to policies 09:42 - Modular vs end-to-end architectures 10:29 - Planner model 12:21 - Adapting RL techniques from quadrupeds to humanoids 15:39 - Behind robot demos 18:09 - Humanoid robots in home environments 22:03 - Training approach 23:56 - VLA models 27:59 - Closing the sim-to-real gap 32:55 - Task orchestration using VLMs 36:38 - Tool use 38:10 - Model hierarchy 43:37 - Simulator versus simulation environment 44:57 - Combining imitation learning and reinforcement learning 46:42 - RL in real world versus RL in simulation 52:58 - Reward tuning and value functions in robotics 56:38 - Predictions 1:00:10 - Humanoids, quadropeds, and wheeled platforms 1:02:45 - Advice, recommended robot kits, and community pla
在@waymo展位上遇到了经营Whole Mars Catalog的Omar,真有趣。
Brad的X账户实际上是@bradtem,抱歉,Brad。它不让我编辑。唉。
464