OK, her er runde 2 av Super Big Brained Optimizer Prompt. Dette innlegget kan heldigvis være mye kortere enn det siterte innlegget, fordi hele arbeidsflyten etter den første prompten er identisk med Runde 1, bare ved å erstatte "1" med "2" i filnavnene. Her er prompten: --- Les først HELE AGENTS md-filen og README-md-filen supernøye og forstå ALLE av begge! Bruk deretter kodeundersøkelsesagent-modusen for å fullt ut forstå koden, den tekniske arkitekturen og formålet med prosjektet. Deretter, når du har gjort en ekstremt grundig og grundig jobb med alt dette og dypt forstått hele det eksisterende systemet og hva det gjør, dets formål, hvordan det implementeres og hvordan alle delene henger sammen, trenger jeg at du undersøker, studerer og grubler over disse spørsmålene i forhold til dette prosjektet: Er det noen andre grove ineffektiviteter i kjernesystemet? steder i kodebasen hvor 1) endringer faktisk ville flytte nålen når det gjelder total forsinkelse/respons og gjennomstrømning; 2) slik at endringene våre ville være beviselig isomorfe når det gjelder funksjonalitet, slik at vi ville vite med sikkerhet at det ikke ville endre de resulterende utgangene gitt de samme inputene; 3) hvor du har en klar visjon for en åpenbart bedre tilnærming når det gjelder algoritmer eller datastrukturer (merk at du for dette kan inkludere i dine vurderinger mindre kjente datastrukturer og mer esoteriske/sofistikerte/matematiske algoritmer, samt måter å omformulere problemet(e) slik at et annet paradigme blir avslørt, som listen vist nedenfor (Merk: Før du foreslår noen optimalisering, etabler grunnlinjemålinger (p50/p95/p99 latens, gjennomstrømning, toppminne) og fang opp CPU-/allokerings-/I/O-profiler for å identifisere faktiske hotspots): - konveks optimalisering (omformulering gir globale optimale garantier) - submodulær optimalisering (grådig gir konstant-faktor tilnærming) - semiringgeneralisering (forener korteste vei, transitiv lukking, dataflyt, parsing) - matroidstrukturgjenkjenning (grådighet er beviselig optimal) - lineær algebra over GF(2) (XOR-systemer, vippeproblemer, feilretting) - reduksjon til 2-SAT (konfigurasjonsvaliditet, implikasjonsgrafer) - reduksjon av min-kostnad maks flyt (tildeling, planlegging, ressursallokering) - bipartitt matchingsgjenkjenning (ungarsk, Hopcroft-Karp) - DP som korteste vei i implisitt DAG (muliggjør prioritetskø-DP, Dijkstra-stil optimalisering) - konveks skrog-triks / Li Chao-trær (O(n²) DP → O(n log n)) - Knuths optimalisering / splitt-og-hersk DP - Hirschbergs plassreduksjon (når det er aktuelt utover justering) - FFT/NTT for konvolusjon (polynommultiplikasjon, sekvenskorrelasjon) - matriseeksponentiering for lineære rekurrensjoner - Möbius-transformasjon / delmengdekonvolusjon - vedvarende/uforanderlige datastrukturer (versjonering, tilbakerulling, spekulativ utførelse) - suffiksautomat / suffiksarray med LCP...