Populaire onderwerpen
#
Bonk Eco continues to show strength amid $USELESS rally
#
Pump.fun to raise $1B token sale, traders speculating on airdrop
#
Boop.Fun leading the way with a new launchpad on Solana.

Liz Harkavy
Crypto-@a16z | Stints bij @Facebook, @NASAJPL, @GoldmanSachs | Natuurkunde en CS @MIT Meng EECS @MIT ||
Vorige week was een historische week voor crypto en voor de Verenigde Staten met de goedkeuring van stablecoin-wetgeving, een van de weinige belangrijke financiële wetten die in de afgelopen 25 jaar zijn ondertekend. Het markeert een betekenisvolle stap om van de Verenigde Staten de thuisbasis voor crypto te maken.
Vandaag zijn we verheugd om onze seed-investering in @CowrieIO aan te kondigen, een crypto-native adviesbureau gevestigd in Wyoming dat gespecialiseerd is in binnenlandse belastingnaleving en entiteitsstructurering. Wij geloven dat de Verenigde Staten op weg zijn om uitgebreide cryptowetgeving uit te vaardigen, en @DKerr_Cowrie & Cowrie zijn goed gepositioneerd om DAO's en cryptoprojecten te helpen aan hun wettelijke verplichtingen te voldoen.
Lees hieronder meer over Cowrie en onze visie op de toekomst van cryptobedrijven en stichtingen.
27,02K
Ik krijg een vreemde hoeveelheid vreugde uit het vertellen aan AI-modellen dat ze ongelijk hebben. Blijkt dat die instinct eigenlijk waardevol is - menselijke feedback is wat AI-modellen beter maakt, en @pankaj en het Yupp-team hebben het perfecte platform gebouwd om dit te benutten.
Ik ben zo enthousiast om @yupp_ai te ondersteunen terwijl ze open infrastructuur bouwen voor de evaluatie van AI-modellen.

Chris Dixon14 jun 2025
I’m excited to announce we’ve led a $33 million seed round in @yupp_ai, a consumer product that allows anyone to discover and compare the latest AI models for free. AI needs robust and trustworthy human data. Crypto is built to provide it.
Modern AI systems are shaped not only by compute and algorithms but by human feedback. Companies use post-training techniques such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimisation (DPO) to improve their models. These techniques can reduce bias and enable higher quality, more coherent responses to prompts — crucial for accelerating progress in AI. Model evaluation is similarly critical, but a model can only be made better after first deciding what “better” means.
That’s where challenges arise: Companies don't like to share — they keep their data and training processes secret. As a result, model improvements are constrained by what can be learned from closed systems or static benchmarks that are rarely informed by real-world use. These constraints make AI models difficult to evaluate. Users are also left in the dark, with little insight into how their feedback shapes models or whether it’s used at all. Some leaderboards and crowdsourcing sites attempt to shed light here, but they generally don’t enable users to audit their contributions or see any direct benefit from participating. Platforms that claim to be fair and transparent often rely more on good faith than enforceable standards.
We believe crypto can bring transparency and ownership to this murky area of AI. Blockchains can make it easier for people to receive rewards for their contributions. They can also provide AI builders with assurances about the quality and provenance of the feedback data and evaluations they’re incorporating into their models. So users get incentives, builders get trustworthy data, and everyone can audit either side of the open market.
Yupp crowdsources model evaluation: users enter prompts, see multiple AI-generated responses side-by-side, and then pick the best ones. Their choices create digitally signed “packets” of preference data that are useful for AI post-training and evaluation. In addition to users getting access to the latest models for free, they receive rewards based on the feedback that they provide.
Yupp’s design turns human judgment into a renewable economic resource. Data “expires” as newer interactions replace it, creating a natural flywheel: more usage yields fresher evaluations; fresher evaluations yield better models; better models attract more usage. All participants — from users to AI model builders — can participate and see that the same transparent rules apply to everyone, ensuring a credibly neutral marketplace. No one can hide the scoreboard, and no one can manipulate the rewards or results.
The founders bring deep experience in both AI and crypto. They built consumer-scale machine learning products together in the early days of Twitter. @pankaj ran global consumer engineering for Google Pay and @Coinbase. @gilad was a machine learning lead at GoogleX. The early team already counts senior engineers from Google, Coinbase, and top research labs.
AI needs strong, reliable evaluation based on large-scale human input. Crypto is the trust machine that can help deliver it. By enabling people worldwide to contribute model-improving feedback, Yupp aims to become the default evaluation layer for the future of AI. We’re proud to back Yupp and look forward to helping them build the onchain feedback loop that ensures the rewards of AI innovation are shared by everyone who helps create it.

2,91K
AI-agenten verstoren de economie van het open web. Inhoudssites verliezen verkeer, betaalmuren stijgen en agenten die wel integreren met gegevensleveranciers bestaan grotendeels in informatie-silo's.
Maar wat als we inkomstenverdeling rechtstreeks in de architectuur van het internet zouden kunnen bouwen?
Lees hierover, samen met andere gebruiksgevallen waar ons team over heeft nagedacht, hieronder.

6,27K
Boven
Positie
Favorieten