
Security Assessment

OKX - Audit 3
CertiK Assessed on May 16th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

1 Major 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

10 Minor 5 Resolved, 5 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

16 Informational 16 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY OKX - AUDIT 3

CertiK Assessed on May 16th, 2023

OKX - Audit 3

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Exchange

ECOSYSTEM

Ethereum (ETH)

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 05/16/2023

KEY COMPONENTS

N/A

CODEBASE
Entrance.sol and UniswapV2AdapterMain.sol :

https://github.com/okx/Yield-External-Audit/

OkxNFTMarketAggregator.sol : https://github.com/okx/NFT-

...View All

COMMITS
Entrance.sol and UniswapV2AdapterMain.sol :

fc37a6284d42b98da8a5ed6b1b6d473168e167d9

OkxNFTMarketAggregator.sol :

...View All

27
Total Findings

5
Resolved

0
Mitigated

0
Partially Resolved

22
Acknowledged

0
Declined

https://github.com/okx/Yield-External-Audit/
https://github.com/okx/NFT-External-Audit-CertiK

TABLE OF CONTENTS OKX - AUDIT 3

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Overview

External Dependencies

Privileged Functions

Findings

OKX-03 : Centralization Related Risks

DRW-01 : Lack of Check on Weights

DRW-02 : Lack of Length Check on Batches

DRW-03 : Missing Validation That Sum of `batchesAmount` Is Equal to `baseRequest.fromTokenAmount`

DRW-04 : Possible Inconsistency Caused by Check of `baseRequest.fromTokenAmount`

DRW-05 : Possibly Incorrect Assignment to Variable `subIndex`

EYE-01 : Unprotected Initializer

EYE-02 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

EYE-03 : Conditional Check on Message Value Should Be Unconditional

ONF-01 : Variable `success` Is Overwritten

UVA-01 : Missing Validation of Token Order in Function `withdraw()`

DRW-06 : Choice of Token for Parameter `fromToken` For Hops

DRW-07 : Typo in Variable Name

DRW-08 : Missing Zero Address Validation

EYE-04 : Unused Event

OKX-01 : Unnecessary Receive Function

OKX-02 : Unlocked Compiler Version

ONF-02 : Inconsistent Handling of Other Markets

ONF-03 : Overwriting Failure

ONF-04 : Allowed Markets in Function `tradeV2()`

ONF-05 : Use of `delegatecall`

TABLE OF CONTENTS OKX - AUDIT 3

ONF-06 : Function State Mutability Can Be Restricted to Pure and View

UVA-02 : Possible Missing Functionality From `BaseAdapter`

UVA-03 : Possibly Incorrect feeRate in Contract UniswapV2AdapterMain

UVA-04 : Reserves Are Used In Calculation of Liquidity Removal

UVA-05 : Inaccurate Require Statement

UVA-06 : Missing Validation of Tokens in Function `amountToShare()`

Appendix

Disclaimer

TABLE OF CONTENTS OKX - AUDIT 3

CODEBASE OKX - AUDIT 3

Repository

Entrance.sol and UniswapV2AdapterMain.sol : https://github.com/okx/Yield-External-Audit/

OkxNFTMarketAggregator.sol : https://github.com/okx/NFT-External-Audit-CertiK

DexRouter.sol : https://github.com/okx/Web3-DEX

Commit

Entrance.sol and UniswapV2AdapterMain.sol : fc37a6284d42b98da8a5ed6b1b6d473168e167d9

OkxNFTMarketAggregator.sol :

0d1fa3d4bc23e9b24094e8ad5432b532aa39f666

401c90c5dec1fd313baa8c91125e25f8d035fd1e

DexRouter.sol :

18b3c82f2bcd3d7d3f3cffaf1412e9aecc409c55

684a3cd4b746c8a28941bcdac878c819932ea2e0

CODEBASE OKX - AUDIT 3

https://github.com/okx/Yield-External-Audit/
https://github.com/okx/NFT-External-Audit-CertiK
https://github.com/okx/Web3-DEX

AUDIT SCOPE OKX - AUDIT 3

4 files audited 4 files with Acknowledged findings

ID File SHA256 Checksum

DRW DexRouter.sol
9ea96090561db280d3e07b0477569100dd02f

c9904d311aad5d508e3a19bef61

ONF OkxNFTMarketAggregator.sol
acbf177ed1d5a61c6b5cf488776a4f421ea26d

66a365b0675442cf516c3bd1ce

EYE Entrance.sol
58aa49a7c1b72e69a1442bbbe745c30824b3

dc562a5d819ad353c70df530d98e

UVA adapters/uniswap/UniswapV2AdapterMain.sol
cf97675f513a2236a14f3a90674853711b4e45

6e9d08e33189dcafdce4624a43

AUDIT SCOPE OKX - AUDIT 3

APPROACH & METHODS OKX - AUDIT 3

This report has been prepared for OKX to discover issues and vulnerabilities in the source code of the OKX - Audit 3 project

as well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS OKX - AUDIT 3

OVERVIEW OKX - AUDIT 3

OKX is a cryptocurrency and derivative exchange that adopts blockchain technology to build the financial ecosystem,

including hundreds of crypto assets.

The current auditing service is provided for the following 4 contracts:

DexRouter: A router built for different kinds of DEXs for the users to trade assets

OkxNFTMarketAggregator: An NFT aggregator for different markets for the users to trade NFTs

Entrance: An entrance to execute instructions that are allowed to be invoked by registered adapters

UniswapV2AdapterMain: An adapter to the UniswapV2 pools that allows the users to stake the LP to MasterChef

External Dependencies

The scope of the audit treats third-party entities as black boxes and assumes their functional correctness. However, in the

real world, third parties can be compromised and this may lead to lost or stolen assets.

There are a few dependent injection contracts or addresses in the current project:

approveProxy , adapters , pools , _WETH , wNativeRelayer , and xBridge in the contract DexRouter

marketRegistry , proxy , CONDUIT , and SEAPORT in the contract OkxNFTMarketAggregator

weth , approveProxy , adapter registered in registedAdatper and registeredFlash in the contract Entrance

rewardPool and pool in the contract UniswapV2AdapterMain

We assume these contracts or addresses are valid and non-vulnerable actors and implement proper logic to collaborate with

the current project.

Privileged Functions

In the OKX project, multiple privileged roles are adopted to ensure the dynamic runtime updates of the project, which were

specified in the following findings OKX-03 | Centralization Related Risks .

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the protocol according

to the runtime required to best serve the community. It is also worth noting the potential drawbacks of these functions, which

should be clearly stated through the client's action/plan. Additionally, if the private keys of the privileged accounts are

compromised, it could lead to devastating consequences for the project.

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the community.

Any plan to invoke the aforementioned functions should be also considered to move to the execution queue of the

Timelock contract.

OVERVIEW OKX - AUDIT 3

FINDINGS OKX - AUDIT 3

This report has been prepared to discover issues and vulnerabilities for OKX - Audit 3. Through this audit, we have

uncovered 27 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

OKX-03 Centralization Related Risks
Centralization /

Privilege
Major Acknowledged

DRW-01 Lack Of Check On Weights Logical Issue Minor Resolved

DRW-02 Lack Of Length Check On Batches Logical Issue Minor Resolved

DRW-03

Missing Validation That Sum Of

batchesAmount Is Equal To

baseRequest.fromTokenAmount

Volatile Code Minor Acknowledged

DRW-04
Possible Inconsistency Caused By Check

Of baseRequest.fromTokenAmount

Logical Issue,

Inconsistency
Minor Resolved

DRW-05
Possibly Incorrect Assignment To Variable

subIndex
Logical Issue Minor Resolved

EYE-01 Unprotected Initializer Coding Style Minor Acknowledged

EYE-02
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Minor Acknowledged

EYE-03
Conditional Check On Message Value

Should Be Unconditional
Logical Issue Minor Acknowledged

ONF-01 Variable success Is Overwritten Logical Issue Minor Resolved

FINDINGS OKX - AUDIT 3

27
Total Findings

0
Critical

1
Major

0
Medium

10
Minor

16
Informational

ID Title Category Severity Status

UVA-01
Missing Validation Of Token Order In

Function withdraw()
Volatile Code Minor Acknowledged

DRW-06
Choice Of Token For Parameter

fromToken For Hops
Logical Issue Informational Acknowledged

DRW-07 Typo In Variable Name Coding Style Informational Acknowledged

DRW-08 Missing Zero Address Validation Volatile Code Informational Acknowledged

EYE-04 Unused Event Coding Style Informational Acknowledged

OKX-01 Unnecessary Receive Function Logical Issue Informational Acknowledged

OKX-02 Unlocked Compiler Version Language Specific Informational Acknowledged

ONF-02 Inconsistent Handling Of Other Markets Logical Issue Informational Acknowledged

ONF-03 Overwriting Failure Logical Issue Informational Acknowledged

ONF-04 Allowed Markets In Function tradeV2() Inconsistency Informational Acknowledged

ONF-05 Use Of delegatecall Logical Issue Informational Acknowledged

ONF-06
Function State Mutability Can Be

Restricted To Pure And View
Language Specific Informational Acknowledged

UVA-02
Possible Missing Functionality From

BaseAdapter
Inconsistency Informational Acknowledged

UVA-03
Possibly Incorrect FeeRate In Contract

UniswapV2AdapterMain
Inconsistency Informational Acknowledged

UVA-04
Reserves Are Used In Calculation Of

Liquidity Removal
Logical Issue Informational Acknowledged

FINDINGS OKX - AUDIT 3

ID Title Category Severity Status

UVA-05 Inaccurate Require Statement Logical Issue Informational Acknowledged

UVA-06
Missing Validation Of Tokens In Function

amountToShare()

Volatile Code,

Inconsistency
Informational Acknowledged

FINDINGS OKX - AUDIT 3

OKX-03 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization /

Privilege
Major

OkxNFTMarketAggregator.sol (OkxNFTMarketAggregato

r.sol): 101~105, 109; DexRouter.sol (DexRouter.sol): 340,

346, 352, 372~378, 384~390, 396~401, 511, 515, 528~532;

Entrance.sol (Entrance.sol and UniswapV2AdapterMain):

109, 118, 127, 135, 144, 164, 176, 283

Acknowledged

Description

In the contract Entrance the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and configure key parameters and manipulate

the project.

OKX-03 OKX - AUDIT 3

Authenticated Role

Function

State Variables

Function

State Variables

Function

Function Calls

Function
State Variables

Function Calls

Function
State Variables

_owner

changeFeeReceiver

setOperator

withdrawDust

setApproveProxy

changeFeeRate

feeReceiver

operator

IAdapter

_transfer

approveProxy

feeRate

In the contract Entrance the role operator has authority over the functions shown in the diagram below. Any compromise

to the operator account may allow the hacker to take advantage of this authority and manipulate the project.

OKX-03 OKX - AUDIT 3

Authenticated Role

Function

Function
operator

configFlash

configAdapter

In addition, the contract Entrance is an upgradeable contract, meaning the owner can upgrade the contract without the

community's commitment. If an attacker compromises the account, the attacker can change the implementation of the

contract and drain tokens from the contract.

In the contract DexRouter the role owner has authority over the following functions�

setApproveProxy() to set approveProxy

setWNativeRelayer() to set the wNativeRelayer

setXBridge() to set the xBridge

initializePMMRouter() to initialize the PMM Router

setPMMFeeConfig() to set the fee rate and receiver of the PMM Router

In addition, the role xBridge has authority over the following functions�

smartSwapByOrderIdByXBridge() to perform the token swaps with the smartswap

unxswapByOrderIdByXBridge() to perform the token swaps with unxswap

uniswapV3SwapToByXBridge() to perform the token swaps with uniswapV3

PMMV2SwapByXBridge() to perform the token swaps with PMMV2Swap

In addition, the contract DexRouter is an upgradeable contract, meaning the owner can upgrade the contract without the

community's commitment. If an attacker compromises the account, the attacker can change the implementation of the

contract and drain tokens from the contract.

In the contract OkxNFTMarketAggregator the role owner has authority over the following functions�

approveERC20(() to approve the ERC20 tokens to the operator

setMarketRegistry() to set the marketRegistry

OKX-03 OKX - AUDIT 3

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

OKX-03 OKX - AUDIT 3

[OKX Team, 05/04/2023] :

At present, the team do have measures to reduce security risks, such as upgrading a dedicated isolated signature machine.

The upgrade is the use of a professional signature machine to send upgrade transactions. We use a multi-signature

mechanism to execute protocol parameters, modify important protocol parameters, and have a dedicated service for

monitoring important protocol parameters, which is also about to be launched.

[CertiK, 05/04/2023] :

To mitigate this issue, the team is planning to adopt multi-signature mechanism to execute protocol parameters and the

status will be updated after deployment.

Due to the company's policy, we cannot mark this issue as resolved unless the ownership is renounced or the privileged

functions are removed. However, after deployment, we can check to see if the multisig wallet that has been provided is

integrated and then classify this issue as Mitigated.

OKX-03 OKX - AUDIT 3

DRW-01 LACK OF CHECK ON WEIGHTS

Category Severity Location Status

Logical Issue Minor DexRouter.sol (DexRouter.sol): 102 Resolved

Description

In the function _exeForks() , multiple swaps are performed, with each swap swapping batchAmount * weight / 10000

tokens.

86 function _exeForks(address payer, uint256 batchAmount, RouterPath calldata

path) private {

87 address fromToken = bytes32ToAddress(path.fromToken);

88

89 // execute multiple Adapters for a transaction pair

90 uint256 pathLength = path.mixAdapters.length;

91 for (uint256 i = 0; i < pathLength;) {

92 bytes32 rawData = bytes32(path.rawData[i]);

93 address poolAddress;

94 bool reserves;

95 uint256 weight;

96 assembly {

97 poolAddress := and(rawData, _ADDRESS_MASK)

98 reserves := and(rawData, _REVERSE_MASK)

99 weight := shr(160, and(rawData, _WEIGHT_MASK))

100 }

101 require(weight >= 0 && weight <= 10000, "weight out of range");

102 uint256 _fromTokenAmount = (batchAmount * weight) / 10000;

103

104 _transferInternal(payer, path.assetTo[i], fromToken, _fromTokenAmount);

Since each swap swaps a portion of batchAmount , it is expected for all of batchAmount to be used. This would require the

sum of all weights to be 10000, but no such check exists, allowing the possibility that some tokens are unused or tokens

meant for a different batch are used.

Recommendation

Recommend adding a check that requires the sum of all weights to be 10000.

Alleviation

[OKX Team, 04/25/2023] :

The team heeded the advice and resolved the finding by adding an extra check that the total weight does not exceed 10000.

DRW-01 OKX - AUDIT 3

https://github.com/okx/Web3-DEX/commit/684a3cd4b746c8a28941bcdac878c819932ea2e0

The change is reflected in the commit 684a3cd4b746c8a28941bcdac878c819932ea2e0 .

DRW-01 OKX - AUDIT 3

https://github.com/okx/Web3-DEX/commit/684a3cd4b746c8a28941bcdac878c819932ea2e0

DRW-02 LACK OF LENGTH CHECK ON BATCHES

Category Severity Location Status

Logical Issue Minor DexRouter.sol (DexRouter.sol): 261~262 Resolved

Description

The function _smartSwapInternal() simultaneously iterates over the arrays batchesAmount and batches to be used

when calling _exeHop() .

316 for (uint256 i = 0; i < batches.length;) {

317 // execute hop, if the whole swap replacing by pmm fails, the funds will

return to dexRouter

318 _exeHop(payer, batchesAmount[i], batches[i], extraData);

319 unchecked {

320 ++i;

321 }

322 }

This suggests that both arrays batchesAmount and batches have to be the same length, but there is no check that this is

the case.

Recommendation

Recommend adding a check ensuring that batchesAmount and batches have the same length.

Alleviation

[OKX Team, 04/25/2023] :

The team heeded the advice and resolved the finding by adding a check to ensure both arrays batchesAmount and

batches have the same length. The change is reflected in the commit 5033a843f434523a2b609b503eadaafe07913207 .

DRW-02 OKX - AUDIT 3

https://github.com/okx/Web3-DEX/commit/5033a843f434523a2b609b503eadaafe07913207

DRW-03 MISSING VALIDATION THAT SUM OF batchesAmount IS

EQUAL TO baseRequest.fromTokenAmount

Category Severity Location Status

Volatile Code Minor DexRouter.sol (DexRouter.sol): 447~449 Acknowledged

Description

In the function smartSwapByInvest() , the fromToken balance of the contract is redistributed proportionally with the ratio

batchesAmount[i] / baseRequest.fromTokenAmount as shown in line 447-449.

446 uint256[] memory newBatchesAmount = new uint256[](batchesAmount.length);

447 for (uint256 i = 0; i < batchesAmount.length; ++i) {

448 newBatchesAmount[i] = batchesAmount[i] * amount /

baseRequest.fromTokenAmount;

449 }

That means the sum of batchesAmount[i] should be the same as baseRequest.fromTokenAmount , but there is no such

validation in the current implementation of smartSwapByInvest() .

Recommendation

Recommend adding an extra check to ensure the sum of batchesAmount[i] is the same as

baseRequest.fromTokenAmount .

Alleviation

[OKX Team, 04/25/2023] :

The team acknowledged the finding and decided not to make any changes to the current version.

DRW-03 OKX - AUDIT 3

DRW-04 POSSIBLE INCONSISTENCY CAUSED BY CHECK OF
baseRequest.fromTokenAmount

Category Severity Location Status

Logical Issue, Inconsistency Minor DexRouter.sol (DexRouter.sol): 544~547 Resolved

Description

The function PMMV2SwapByInvest() invokes the _PMMV2Swap() to perform a token swap via the private market maker.

538 function PMMV2SwapByInvest(

539 address receiver,

540 PMMLib.PMMBaseRequest memory baseRequest,

541 PMMLib.PMMSwapRequest calldata request

542) external payable nonReentrant returns (uint256 returnAmount) {

543 require(request.fromToken != _ETH, "Invalid source token");

544 if (baseRequest.fromTokenAmount == 0) {

545 baseRequest.fromTokenAmount =

IERC20(request.fromToken).balanceOf(address(this));

546 }

547 return _PMMV2Swap(address(this), receiver, baseRequest, request);

548 }

The argument fromTokenPayer is set as the contract address in line 547 of function PMMV2SwapByInvest() .

 function _PMMV2Swap(

 address fromTokenPayer,

 address receiver,

 PMMLib.PMMBaseRequest memory baseRequest,

 PMMLib.PMMSwapRequest calldata request

) internal returns (uint256 returnAmount) {

...

However, the baseRequest.fromTokenAmount is updated to the IERC20(request.fromToken).balanceOf(address(this))

only if the input baseRequest.fromTokenAmount == 0 . In the case that the baseRequest.fromTokenAmount is nonzero, it

will not be updated. Considering the case the baseRequest.fromTokenAmount is larger than

IERC20(request.fromToken).balanceOf(address(this)) , the swap will fail due to insufficient funds in the contract when

line 175 of function _pmmSwapInternal() is executed.

_pmmSwapInternal() in Web3-DEX-dev/contracts/8/PMMRouter.sol

DRW-04 OKX - AUDIT 3

171 if (fromNative) {

172 IWETH(_WETH).deposit{ value: actualAmountRequest }();

173 IERC20(_WETH).safeTransfer(request.payer, actualAmountRequest);

174 } else if(fromTokenPayer == address(this)) {

175 IERC20(request.fromToken).safeTransfer(request.payer,

actualAmountRequest);

176 } else {

177 IApproveProxy(_APPROVE_PROXY).claimTokens(request.fromToken,

fromTokenPayer, request.payer, actualAmountRequest);

178 }

Recommendation

Recommend removing the check of baseRequest.fromTokenAmount == 0 so that the baseRequest.fromTokenAmount will

be updated under any circumstances.

Alleviation

[OKX Team, 04/25/2023] :

The team heeded the advice and resolved the finding by removing the check baseRequest.fromTokenAmount == 0 . The

change is reflected in the commit 71ad0a2c2fef629c41682822990452b5d9a4ad2e .

DRW-04 OKX - AUDIT 3

https://github.com/okx/Web3-DEX/commit/71ad0a2c2fef629c41682822990452b5d9a4ad2e

DRW-05 POSSIBLY INCORRECT ASSIGNMENT TO VARIABLE
subIndex

Category Severity Location Status

Logical Issue Minor DexRouter.sol (DexRouter.sol): 203 Resolved

Description

In the function _tryPmmSwap() , the variable subIndex is assigned the length of the bytes array

pmmRequest.extension .

202 assembly{

203 subIndex := mload(add(extension, 0x0))

204 }

The operation add(extension, 0x0) is redundant meaning mload(extension) will produce the same result.

Recommendation

The auditing team would like to know if subIndex is supposed to be an element of pmmmRequest.extension . For example,

if subIndex is meant to be the first 32 bytes, then the operation should instead be add(extension, 0x20) .

Alleviation

[OKX Team, 04/25/2023] :

The team resolved the finding by changing the position from 0x0 to 0x20 . The change is reflected in the commit

ea178623d4bd0f22873aa39ec0049cf6640999f5 .

DRW-05 OKX - AUDIT 3

https://github.com/okx/Web3-DEX/commit/ea178623d4bd0f22873aa39ec0049cf6640999f5

EYE-01 UNPROTECTED INITIALIZER

Category Severity Location Status

Coding Style Minor Entrance.sol (Entrance.sol and UniswapV2AdapterMain): 73 Acknowledged

Description

One or more logic contracts do not protect their initializers. An attacker can call the initializer and assume ownership of the

logic contract, whereby she can perform privileged operations that trick unsuspecting users into believing that she is the

owner of the upgradeable contract.

18 contract Entrance is InvestBase, OwnableUpgradeable, ReentrancyGuardUpgradeable

{

Entrance is an upgradeable contract that does not protect its initializer.

73 function initialize(IWETH _weth) public initializer {

initialize is an unprotected initializer function.

Recommendation

We advise calling _disableInitializers in the constructor or giving the constructor the initializer modifier to prevent

the intializer from being called on the logic contract.

Reference: https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-

upgradeable#initializing_the_implementation_contract

Alleviation

[OKX Team, 04/24/2023] :

The team acknowledged the finding and decided not to make any changes to the current version.

EYE-01 OKX - AUDIT 3

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract

EYE-02 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile Code Minor Entrance.sol (Entrance.sol and UniswapV2AdapterMain): 352 Acknowledged

Description

The return value of the transfer()/transferFrom() call is not checked.

352 weth.transfer(to, amount);

Recommendation

Since some ERC-20 tokens return no values and others return a bool value, they should be handled with care. We advise

using the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and transferFrom()

functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a return value and

reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[OKX Team, 04/24/2023] :

The team acknowledged the finding and plan to fix the issue in the future.

EYE-02 OKX - AUDIT 3

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol

EYE-03 CONDITIONAL CHECK ON MESSAGE VALUE SHOULD BE
UNCONDITIONAL

Category Severity Location Status

Logical Issue Minor Entrance.sol (Entrance.sol and UniswapV2AdapterMain): 382 Acknowledged

Description

The function _transferTokens() has a check to see if msg.value matches the amount of native tokens that have been

transferred to other addresses.

382 if (msg.value != 0) {require(msg.value == nativeAmount,

MetaXInvestErrors.QUANTITY_MISMATCH);}

However, this check is only performed if msg.value != 0 , when it should be always done.

If msg.value == 0 but nativeAmount > 0 , it is possible for the contract to lose native currency that was stored within it

before the current msg.sender interacted with it. Since this contract has a receive() function, it is expected that it will

hold native currency, which can be lost due to the above.

Recommendation

Recommend always ensuring that msg.value == nativeAmount .

Alleviation

[OKX Team, 04/24/2023] :

The team acknowledged the finding and plan to fix the issue in the future.

EYE-03 OKX - AUDIT 3

ONF-01 VARIABLE success IS OVERWRITTEN

Category Severity Location Status

Logical

Issue
Minor

OkxNFTMarketAggregator.sol (OkxNFTMarketAggregator.sol): 523~528,

553, 574, 588~594, 607, 624
Resolved

Description

In both functions _performERC1155Transfer() and _performERC721Transfer() , the variable success is assigned with 0

if the passed token is not a contract. After that, the success is assigned with the return value of the call() , which

means the success is overwritten by the return value of call() .

In the case that the passed token is not a contract, it should return false immediately and should not continue the execution

of the remaining code.

Recommendation

Recommend returning the value of success if it is false.

Alleviation

[OKX Team, 04/26/2023] :

The team resolved the finding by using gt(extcodesize(token), 0) instead of iszero(extcodesize(token)) and

removing the variable success from the first if branch to ensure the variable success will only be assigned with the

return value of function call() . The change is reflected in the commit 401c90c5dec1fd313baa8c91125e25f8d035fd1e .

ONF-01 OKX - AUDIT 3

https://github.com/okx/NFT-External-Audit-CertiK/commit/401c90c5dec1fd313baa8c91125e25f8d035fd1e

UVA-01 MISSING VALIDATION OF TOKEN ORDER IN FUNCTION
withdraw()

Category Severity Location Status

Volatile

Code
Minor

adapters/uniswap/UniswapV2AdapterMain.sol (Entrance.sol and Un

iswapV2AdapterMain): 52
Acknowledged

Description

In the implementation of Uniswap V2, the function IUniswapV2Pair(pool).getReserves() retrieves the reserves of tokens

in which the first reserve corresponds to the token0 and the second one is the token1. The token0 and token1 are recorded

according to the rule that address(token0) < address(token1).

In the function withdraw() and _withdraw() , the passed tokensOut does not validate whether the tokens are in the

order that address(tokensOut[0].token) < address(tokensOut[1].token) . If one of them is a zero address, it needs to

be converted to the weth address first.

UVA-01 OKX - AUDIT 3

50 function withdraw(

51 address pool,

52 TokenOutInfo[] calldata tokensOut,

53 bytes calldata data

54) external override {

55

56 // Check Length

57 require(tokensOut.length == 2, 'Length Wrong');

58

59 // Decode feeRate+mode from data

60 // mod=2 for withdraw two tokens;mod=0 for withdraw token0;mod=1 for

withdraw token1

61 (uint256 feeRate, uint256 mode) = _getFeeRate(pool, data);

62

63 // Read Status

64 uint256 tokenAmount = _balanceOf(pool, address(this));

65

66 // Transfer to Pool

67 _transfer(pool, pool, tokenAmount);

68

69 // remove liquidity

70 (uint256 amount0, uint256 amount1) =

IUniswapV2Pair(pool).burn(address(this));

71

72 _withdraw(pool, feeRate, mode, tokensOut, amount0, amount1);

73

74 // Event

75 emit Withdraw(pool, tokenAmount);

76

77 }

In this case, it will revert or transfer the wrong token amounts if the tokens are flipped.

Recommendation

Recommend adding an extra check that the token order matches the tokens in the pool.

Alleviation

[OKX Team, 04/24/2023] :

The team acknowledged the finding and plan to fix the issue in the future.

In the future, we will update with a fix, but we currently make sure that the tokensOut tokens are in the appropriate order.

UVA-01 OKX - AUDIT 3

DRW-06 CHOICE OF TOKEN FOR PARAMETER fromToken FOR

HOPS

Category Severity Location Status

Logical Issue Informational DexRouter.sol (DexRouter.sol): 124 Acknowledged

Description

In the function _exeHop() , the first hop executed swaps batchAmount of hops[0].fromToken . It should be the case that

hops[0].fromToken is the same address as _baseRequest.fromToken in _smartSwapInternal() , but there are no

checks to guarantee this.

Recommendation

It is recommended to add a check ensuring that the fromToken for hops are the appropriate address.

Alleviation

[OKX Team, 04/25/2023] :

The team acknowledged the finding and decided not to make any changes to the current version.

DRW-06 OKX - AUDIT 3

DRW-07 TYPO IN VARIABLE NAME

Category Severity Location Status

Coding Style Informational DexRouter.sol (DexRouter.sol): 94, 98, 106 Acknowledged

Description

The variable reserves passed in the function _exeForks() seems to be reverse or reversed based on the following

observation:

reserves is assigned with the value and(rawData, _REVERSE_MASK) , as the constant name _REVERSE_MASK

indicates;

when reserves is true, it invokes the IAdapter(path.mixAdapters[i]).sellQuote() to sell the token1 in the

pool pair; Otherwise, it calls IAdapter(path.mixAdapters[i]).sellBase() to sell the token0 in the pool pair.

The second point implies that it sells the token1 if reversed and it sells the token0 if not reversed.

Recommendation

Recommend correcting the variable name to improve the code readability.

Alleviation

[OKX Team, 04/25/2023] :

The team acknowledged the finding and decided not to make any changes to the current version.

DRW-07 OKX - AUDIT 3

DRW-08 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile Code Informational DexRouter.sol (DexRouter.sol): 340, 346, 352 Acknowledged

Description

Addresses should be checked before assignment to ensure they are not zero addresses.

Recommendation

Recommend adding a check that the passed address is not a zero address.

Alleviation

[OKX Team, 04/25/2023] :

The team acknowledged the finding and decided not to make any changes to the current version.

DRW-08 OKX - AUDIT 3

EYE-04 UNUSED EVENT

Category Severity Location Status

Coding

Style
Informational

Entrance.sol (Entrance.sol and UniswapV2AdapterMain): 8

5
Acknowledged

Description

The event SetIfCheck(bool ifCheck) is declared in the contract Entrance , but it has never been used in the codebase.

Recommendation

Recommend removing the unused event SetIfCheck() .

Alleviation

[OKX Team, 04/24/2023] :

The team acknowledged the finding and plan to fix the issue in the future.

EYE-04 OKX - AUDIT 3

OKX-01 UNNECESSARY RECEIVE FUNCTION

Category Severity Location Status

Logical

Issue
Informational

OkxNFTMarketAggregator.sol (OkxNFTMarketAggregator.sol):

96; DexRouter.sol (DexRouter.sol): 27; Entrance.sol (Entranc

e.sol and UniswapV2AdapterMain): 482; adapters/uniswap/Un

iswapV2AdapterMain.sol (Entrance.sol and UniswapV2Adapte

rMain): 469

Acknowledged

Description

All contracts in the auditing scope contain a receive() function that accepts direct transfers of the native token. However,

there is currently no purpose for the contracts to hold native tokens and it is possible for users to take these tokens.

Each contract contains mechanisms for a user to take any native tokens held by the contract:

DexRouter performs arbitrary swaps and performs no checks on msg.value , allowing a user to swap native

tokens inside the contract;

OkxNFTMarketAggregator returns unused ETH, but performs no checks on msg.value , allowing a user to have

native tokens inside the contract be viewed as unused ETH;

Entrance transfers tokens to arbitrary addresses in _transferToken() and the msg.value check in

_transferTokens() can be bypassed if msg.value == 0 , allowing the transfer of native tokens held inside the

contract;

UniswapV2AdapterMain expects users to transfer tokens to the contract and deposit them, allowing users to deposit

native tokens already held inside the contract.

If the transfer of native tokens are meant to be used with a payable function, then it would be better to ensure msg.value

is correct instead of having a receive() function.

Recommendation

Recommend removing the receive() function if it is not needed by the project.

Alleviation

[OKX Team, 05/16/2023] :

The team acknowledged the finding and will not make any changes to the codebase.

OKX-01 OKX - AUDIT 3

OKX-02 UNLOCKED COMPILER VERSION

Category Severity Location Status

Language

Specific
Informational

OkxNFTMarketAggregator.sol (OkxNFTMarketAggregato

r.sol): 2; DexRouter.sol (DexRouter.sol): 2
Acknowledged

Description

The contracts cited have an unlocked compiler version. An unlocked compiler version in the source code of the contract

permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated bytecode

between compilations due to differing compiler version numbers. This can lead to ambiguity when debugging, as compiler

specific bugs may occur in the codebase that would be hard to identify over a span of multiple compiler versions rather than

a specific one.

Recommendation

We recommend the compiler version is instead locked at the lowest version possible that the contract can be compiled at.

For example, for version v0.8.2 the contract should contain the following line:

pragma solidity 0.8.2;

Alleviation

[OKX Team, 05/16/2023] :

The team acknowledged the finding and will not make any changes to the codebase.

OKX-02 OKX - AUDIT 3

ONF-02 INCONSISTENT HANDLING OF OTHER MARKETS

Category Severity Location Status

Logical

Issue
Informational

OkxNFTMarketAggregator.sol (OkxNFTMarketAggregator.s

ol): 114, 213
Acknowledged

Description

In the two functions labeled trade() , there is a check on the provided tradeData that the orderToAddress is the

msg.sender . However, this check is done for some of the markets instead of all of them.

Recommendation

The auditing team would like to know if this check is meant to be excluded for other markets.

Alleviation

[OKX Team, 04/26/2023] :

The team acknowledged the finding and decided not to make any changes to the current version.

ONF-02 OKX - AUDIT 3

ONF-03 OVERWRITING FAILURE

Category Severity Location Status

Logical

Issue
Informational

OkxNFTMarketAggregator.sol (OkxNFTMarketAggregator.s

ol): 340, 355, 364
Acknowledged

Description

In the function tradeV2() , low-level calls are performed in three places:

1. beforeExecute() , which transfers tokens from msg.sender to address(this)

2. During a call to SEAPORT

3. afterExecute() , which transfers tokens from address(this) to msg.sender

The only way for the process to revert is during 2) if isAtomic == true and the call to SEAPORT fails and returns data.

Hence, it is possible for 1) or 2) to fail but 3) succeeds. Note that 3) returns true even if no low-level calls are made, for

example, using an unsupported actionType will have 3) return true .

Recommendation

The auditing team would like to confirm that failed calls in 1) and 2) are allowed to be overwritten by a successful call in 3) or

if no calls are performed in 3).

Alleviation

[OKX Team, 04/26/2023] :

The team acknowledged the finding. It is currently allowed and will be refactored in the next version.

ONF-03 OKX - AUDIT 3

ONF-04 ALLOWED MARKETS IN FUNCTION tradeV2()

Category Severity Location Status

Inconsistency Informational
OkxNFTMarketAggregator.sol (OkxNFTMarketAggregator.

sol): 312~313
Acknowledged

Description

The function tradeV2() allows the users to trade NFTs with specified markets. The comment in line 312 indicates only the

market wyvern (id is 4 based on the implementation) is allowed to be used in tradeV2() , but the implementation in line

313:

313 if(tradeDetails[i].marketId != 0 && tradeDetails[i].marketId !=4 &&

tradeDetails[i].marketId < 7) {

also allows the market with id 0.

Recommendation

The auditing team would like to know if only the wyvern is allowed or if both market id 0 and 4 (wyvern) are allowed.

Alleviation

[OKX Team, 04/26/2023] :

The team acknowledged the finding and confirmed that both market id 0 and 4 are allowed.

ONF-04 OKX - AUDIT 3

ONF-05 USE OF delegatecall

Category Severity Location Status

Logical

Issue
Informational

OkxNFTMarketAggregator.sol (OkxNFTMarketAggregator.s

ol): 192, 275, 386
Acknowledged

Description

Anyone is able to use the functions trade() and tradeV2() , which may make a delegatecall to proxy with data

tradeData .

191 (bool success,) = isLib

192 ? proxy.delegatecall(tradeData)

193 : proxy.call{value: ethValue}(tradeData);

As tradeData is user defined, if proxy has functions that can change state variables, state variables of

OkxNFTMarketAggregator , such as _owner , may be changed.

Recommendation

The auditing team would like to know what kind of contract proxy will be when making a delegatecall to it.

Alleviation

[OKX Team, 04/26/2023] :

The team acknowledged the finding. The proxy is the adapter which is provided by the team.

ONF-05 OKX - AUDIT 3

ONF-06 FUNCTION STATE MUTABILITY CAN BE RESTRICTED TO
PURE AND VIEW

Category Severity Location Status

Language

Specific
Informational

OkxNFTMarketAggregator.sol (OkxNFTMarketAggregato

r.sol): 32~35, 42~45, 424
Acknowledged

Description

The functions bytesToAddress() and bytesToBytes4() do not read any state variable so they can be restricted to pure.

In addition, the function verifyWyvern() does not modify any state variable, so it can be changed to view.

Recommendation

Recommend changing the function state mutability of the aforementioned functions.

Alleviation

[OKX Team, 04/26/2023] :

The team acknowledged the finding and decided not to make any changes to the current version.

ONF-06 OKX - AUDIT 3

UVA-02 POSSIBLE MISSING FUNCTIONALITY FROM BaseAdapter

Category Severity Location Status

Inconsistency Informational
adapters/uniswap/UniswapV2AdapterMain.sol (Entrance.s

ol and UniswapV2AdapterMain): 10
Acknowledged

Description

The UniswapV2AdapterMain contract inherits the BaseAdapter abstract contract which contains various functions that

perform no operations. UniswapV2AdapterMain has overwritten some of the functions but not all of them, namely

unstake() , unStakeAndWithdraw() , and claimReward() .

Recommendation

It is recommended to implement all functions.

Alleviation

[OKX Team, 04/24/2023] :

The team acknowledged the finding and decided not to make any changes to the current version. The

UniswapV2AdapterMain contract does not use all of the above functions.

UVA-02 OKX - AUDIT 3

UVA-03 POSSIBLY INCORRECT FEERATE IN CONTRACT
UNISWAPV2ADAPTERMAIN

Category Severity Location Status

Inconsistency Informational

adapters/uniswap/UniswapV2AdapterMain.sol (Entrance.s

ol and UniswapV2AdapterMain): 165, 168, 205, 215, 324,

336, 387, 403

Acknowledged

Description

The standard fee charged on the UniswapV2 pool is 3 out of 1000 deducted from the tokens to be swapped. In the contract

UniswapV2AdapterMain , a custom fee rate is used to calculate getAmountOut() , which could result in a different value if

the underlying pool uses the standard fee.

Yield-External-Audit/contracts/libraries/MetaXMath.sol

74 function getAmountOut(

75 uint256 amountIn,

76 uint256 reserveIn,

77 uint256 reserveOut,

78 uint256 feeInPrecision,

79 uint256 precision

80) internal pure returns (uint256 amountOut) {

81 require(

82 reserveIn > 0 && reserveOut > 0,

83 "UniswapV2Library: INSUFFICIENT_LIQUIDITY"

84);

85 if (amountIn > 0) {

86 uint256 amountInWithFee = amountIn.mul(feeInPrecision);

87 uint256 numerator = amountInWithFee.mul(reserveOut);

88 uint256 denominator =

reserveIn.mul(precision).add(amountInWithFee);

89 amountOut = numerator / denominator;

90 }

91 }

Recommendation

Recommend checking if the standard fee matches the custom fee.

Alleviation

UVA-03 OKX - AUDIT 3

[OKX Team, 04/20/2023] :

The team acknowledged the finding and decided not to make any changes to the current version.

UVA-03 OKX - AUDIT 3

UVA-04 RESERVES ARE USED IN CALCULATION OF LIQUIDITY
REMOVAL

Category Severity Location Status

Logical

Issue
Informational

adapters/uniswap/UniswapV2AdapterMain.sol (Entrance.sol

and UniswapV2AdapterMain): 152, 158~162
Acknowledged

Description

The function shareToAmount() is used to calculate the withdrawal amounts with the specified LP tokens. In the calculation

of the withdrawal amounts of token0 and token1, the reserves of the pool are used instead of the balances of the pool.

152 (uint256 r0, uint256 r1,) = IUniswapV2Pair(pool).getReserves();

153

154 // TotalSupply

155 uint256 totalSupply = _feeLp(r0,r1,pool);

156 require(totalSupply > amount, MetaXInvestErrors.NOT_ENOUGH);

157

158 uint256 amount0 = r0 * amount / totalSupply;

159 uint256 amount1 = r1 * amount / totalSupply;

160

161 r0 = r0 - amount0;

162 r1 = r1 - amount1;

163 ...

However, in the implementation of the function burn() in the UniswapV2, the balances in the pool are used to ensure pro-

rata distribution.

UVA-04 OKX - AUDIT 3

 function burn(address to) external lock returns (uint amount0, uint amount1) {

 (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings

 address _token0 = token0; // gas savings

 address _token1 = token1; // gas savings

 uint balance0 = IERC20(_token0).balanceOf(address(this));

 uint balance1 = IERC20(_token1).balanceOf(address(this));

 uint liquidity = balanceOf[address(this)];

 bool feeOn = _mintFee(_reserve0, _reserve1);

 uint _totalSupply = totalSupply; // gas savings, must be defined here since

totalSupply can update in _mintFee

 amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures

pro-rata distribution

 amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures

pro-rata distribution

...

Recommendation

Recommend using the balances in the function shareToAmount() to obtain more accurate results.

Alleviation

[OKX Team, 04/24/2023] :

The team acknowledged the finding and plan to fix the issue in the future.

UVA-04 OKX - AUDIT 3

UVA-05 INACCURATE REQUIRE STATEMENT

Category Severity Location Status

Logical

Issue
Informational

adapters/uniswap/UniswapV2AdapterMain.sol (Entrance.sol

and UniswapV2AdapterMain): 156
Acknowledged

Description

The function shareToAmount() is used to calculate the withdrawal amounts with the specified LP tokens. After the update in

the total supply of the LP, the following check is executed:

156 require(totalSupply > amount, MetaXInvestErrors.NOT_ENOUGH);

According to UniswapV2 design, MINIMUM_LIQUIDITY = 10**3 LP tokens have been locked. Therefore, a more precise

statement is as follows:

require(totalSupply > amount + MINIMUM_LIQUIDITY, MetaXInvestErrors.NOT_ENOUGH);

Recommendation

Recommend adding the MINIMUM_LIQUIDITY in the check if such amount of LP has been locked.

Alleviation

[OKX Team, 04/24/2023] :

The team acknowledged the finding and decided not to make any changes to the current version. This function is only used

to query information.

UVA-05 OKX - AUDIT 3

UVA-06 MISSING VALIDATION OF TOKENS IN FUNCTION
amountToShare()

Category Severity Location Status

Volatile Code,

Inconsistency
Informational

adapters/uniswap/UniswapV2AdapterMain.sol (Entr

ance.sol and UniswapV2AdapterMain): 188
Acknowledged

Description

The function amountToShare() is used to calculate the liquidity given the amounts of two tokens. However, there is no

check that the passed tokenAmounts has length 2 and the token order matches with the tokens in the underlying pool that

has the requirement address(token0) < address(token1) . In the case that one of them is the eth, it needs to be

converted to the weth first.

Recommendation

Recommend adding extra checks to ensure the tokenAmounts has length 2 and the token order is properly validated.

Alleviation

[OKX Team, 04/24/2023] :

The team acknowledged the finding and plan to fix the issue in the future.

This function is only used to query. We will make sure that the tokens are in order and we will add the requirement to ensure

that the length is 2.

UVA-06 OKX - AUDIT 3

APPENDIX OKX - AUDIT 3

Finding Categories

Categories Description

Centralization /

Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that

act against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on

how block.timestamp works.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

that may result in a vulnerability.

Language

Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of

private or delete.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX OKX - AUDIT 3

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER OKX - AUDIT 3

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER OKX - AUDIT 3

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

OKX - Audit 3 Security Assessment CertiK Assessed on May 16th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

